Thursday, January 16, 2020

Binary Classifiation

Binary Classification

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import tensorflow as tf
import keras
import numpy as np

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

#print("train_data[0] : ")
#print(train_data[0])

print(max([max(sequence) for sequence in train_data]))

word_index = imdb.get_word_index()
reverse_word_index = dict([value, key] for(key, value) in word_index.items())
decoded_review = ''.join([reverse_word_index.get(i-3, '?') for i in train_data[0]])
print(decoded_review)

def vectorize_sequences(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i, sequence in enumerate(sequences):
        results[i, sequence] = 1.
    return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

print(x_train)